

์งํฉ์ผ๋ก ํํ ๊ฐ๋ฅ
$$ V=\lbrace A,B,C,D,E,F\rbrace \\E=\lbrace (A,B), (A,C),\cdots, (D,F)\rbrace \\G=(V,E) $$
์ธ์ ํ๋ ฌ(Adjacency matrix)๋ก ํํ : edge์ ํด๋นํ๋ cell์ 1๋ก ํ์. โ ์ปดํจํฐ๊ฐ ์ฐ์ฐํ๊ธฐ ํธ๋ฆฌ
| A | B | C | D | E | F | |
|---|---|---|---|---|---|---|
| A | 0 | 1 | 1 | 0 | 0 | 0 |
| B | 1 | 0 | 0 | 0 | 1 | 0 |
| C | 1 | 0 | 0 | 1 | 1 | 0 |
| D | 0 | 0 | 1 | 0 | 0 | 1 |
| E | 0 | 1 | 1 | 0 | 0 | 0 |
| F | 0 | 0 | 0 | 1 | 0 | 0 |
์ธ์ ๋ฆฌ์คํธ(Adjacency list)
| A | B | C | |
|---|---|---|---|
| B | A | E | |
| C | A | D | E |
| D | C | F | |
| E | B | C | |
| F | D |
Order : the number of nodes
Size : the number of edges
Degree of nodes : the number of connected nodes

Density : $\frac{2|E|}{|V|(|V|-1)}$
$$ D=\frac{2|E|}{|V|(|V|-1)}=\frac{|E|}{\frac{|V|(|V|-1)}{2}} \\0\leq\frac{|E|}{\frac{|V|(|V|-1)}{2}} \leq 1 $$
โ Density๊ฐ 1์ด๋ฉด ํด๋น ๊ทธ๋ํ๋ Complete graph์ด๊ณ , density๊ฐ 0์ด๋ฉด edge๊ฐ ์๋ ๊ทธ๋ํ. density๊ฐ 1์ ๊ฐ๊น์ธ์๋ก ๊ทธ๋ํ๋ ์ด์ดํ๋ค(edge๊ฐ ๋ง๋ค.).
๋ฐฉํฅ์ฑ์ด ์๋ ์ฌ๋ถ์ ๋ฐ๋ผ

edge์ ๊ฐ์ค์น๊ฐ ์กด์ฌํ๋์ง ์ฌ๋ถ์ ๋ฐ๋ผ



๋ชจ๋ node๊ฐ ์ฐ๊ฒฐ๋ ๊ทธ๋ํ
๊ฐ node๋ณ edge์ ๊ฐ์ = (#node - 1)
