◾Intro

🔻references

◾Main

🔻Kernel Trick (Kernelization)

🔸개념

🔸배경지식

ref : 🔸Multiple Regression

image.png

🔸Kernelization

$$ L(\bold{x})=\sum_{i=1}^n(y_i-\hat{y_i})^2=\sum_{i=1}^n(y_i-\bold{w}^T\phi(x_i))^2 \\\text{Let }\quad\alpha_i=\sum_{i=1}^n(y_i-\bold{w}^T\phi(x_i)) \\L(\bold{x})=(\bold{y}-\bold{w}^T\phi(\bold{x}))^T(\bold{y}-\bold{w}^T\phi(\bold{x}))=(\bold{y}-\bold{w}^T\phi(\bold{x}))^T(\bold{y}-\bold{w}^T\phi(\bold{x}))

$$

🔻Radial Basis Function (=Gaussian Kernel)